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Abstract

Although a number of analyses have been presented on the size e}ects on transport properties like the thermal
conductivity\ very few studies have focused on size e}ects on thermodynamic properties like the heat capacity[ The
present analysis considers the e}ect of size on thermodynamic properties when the dimension in one\ two or all three
directions is extremely small\ leading to a reduction in the number of phonon wave vectors[ The results are presented in
a novel non!dimensional form\ so that the e}ect of dimension on the thermal properties of any material can be easily
obtained once the bulk properties are known[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

A constant in equation "14#
a lattice constant ðA� Ł
C heat capacity ðJŁ
c heat capacity per unit volume ðJ m−2Ł
f Helmholtz energy per unit volume ðJ m−2Ł
F intermediate function for calculating heat capacity
` Gibbs energy per unit volume ðJ m−2Ł
h enthalpy per unit volume ðJ m−2Ł
2 Planck|s constant divided by 1p�0[943385×09−23 J s
H represents any thermodynamic property
k wave vector ðm−0Ł
kb Boltzmann constant � 0[27951×09−12 J K−0

kd Debye wave vector ðm−0Ł
K spring constant ðkg s−1Ł
L length ðA� Ł
m mass of an atom ðkgŁ
mmax maximum index of summation
n atomic density ðm−2Ł
N number of atoms or number of atomic layers
r distance between two atoms ðA� Ł
r9 nearest neighbor separation at equilibrium ðA� Ł
R non!dimensional parameter

� Corresponding author[ Tel[] 990 591 854 0514^ fax] 990 591
854 0273^ e!mail] phelanÝasu[edu

s entropy per unit volume ðJ m−2 K−0Ł
T temperature ðKŁ
u internal energy per unit volume ðJ m−2Ł[

Greek symbols
a quantum ~uctuation parameter
b e}ective temperature
Dk small element of the wave vector ðm−0Ł
Dp uncertainty in the momentum ðkg m s−0Ł
Dx uncertainty in the position ðmŁ
o ratio of the exact number of points within k space to
the number of points for a k space of spherical shape
u Debye temperature ðKŁ
lc critical phonon wavelength ðmŁ
L mean free path of phonons ðmŁ
n speed of sound ðm s−0Ł
j parameter in LennardÐJones potential ðJŁ
P number of atoms per unit cell
s parameter in LennardÐJones potential ðmŁ
f LennardÐJones potential ðJŁ
C function representing size e}ects on various ther!
modynamic parameters
v phonon angular frequency ðrad s−0Ł[

Subscripts
exact exact number of points in k space
i\ j indices
int integration
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spherical k space of spherical shape
sum summation
x\ y\ z directional coordinates[

0[ Introduction

Thin _lms play a major role in modern!day electronics\
where the size e}ects are due to a reduction in only one
dimension\ i[e[\ in the _lm thickness direction[ A wide
range of micro! and nanoscale devices that do not fall
into the category of thin _lms\ meaning that size e}ects
are due to reduced dimensions along two or three direc!
tions\ are also important in this era of microscale device
technology[ Some of these devices are quantum wires ð0Ł
and quantum dots ð1Ł[

Pronounced size e}ects on the thermal conductivity of
such micro structures have received considerable atten!
tion over the past decade\ with the results summarized in
two recent review articles ð2\ 3Ł[ Although ther!
modynamic properties are known to exhibit size e}ects\
very little has been done in the past to consider such
e}ects in a practically useful manner for engineering cal!
culations[ Recent investigation by the authors\ however\
demonstrated a pronounced size e}ect on the ther!
modynamic properties of thin _lms due to the absence of
a large number of wave vectors "k# or equivalently\ states\
in a thin!_lm structure ð4\ 5Ł[ Some of the other prominent
calculations on the heat capacity are by Grille et al[ ð6Ł
and McGurn et al[ ð7Ł[ Prasher and Phelan ð4\ 5Ł used the
Debye model and the results were presented in a new
non!dimensional form\ which accurately described the
thermal properties of thin _lms[ Prasher and Phelan ð4\
5Ł also demonstrated that the Debye temperature remains
constant as opposed to that suggested by Grille et al[ ð6Ł[
The e}ect of such strati_ed k values is expected to be
more pronounced for structures with reduced dimensions
along two or all three mutually perpendicular directions[
Consequently\ the present analysis examines size e}ects
on the thermodynamic properties due to reductions in
the dimensions along two or three directions[

At these minute scales it is also expected that the Debye
model will not hold even at low temperatures\ whereas
for the bulk material it works well at low temperatures[
The phonon dispersion is thus calculated using the BornÐ
von Ka�rma�n model and the Debye model[ Any structure
that shows size e}ects due to a reduced dimension along
one direction is referred to as a 0!D "one!dimensional#
structure\ e[g[ a thin _lm\ along two directions 1!D and
along all three directions as 2!D[ Analogous to the pre!
vious non!dimensionalization of results for a 0!D struc!
ture ð4\ 5Ł\ a non!dimensionalization for 1! and 2!D struc!
tures is also suggested\ which nicely describes the size
e}ects in a universal manner[ The analysis is further car!
ried out for other thermodynamic properties such as
entropy[ The results are also compared with the cal!

culation of McGurn et al[ ð7Ł for the size e}ects on the
heat capacity of a linear chain of atoms[

1[ Size effect on the phonon heat capacity

A simple lattice is considered as shown in Fig[ 0[ It is
assumed that the lattice is simple cubic with the gen!
eralization that the number of atoms per unit volume\ or
the atomic density "n#\ is that of the actual lattice struc!
ture[ If the numbers of atoms in the x!\ y! and z!directions
are Nx¦0\ Ny¦0 and Nz¦0\ respectively\ then

Nx �
Lx

a
\ Ny �

Ly

a
\ Nz �

Lz

a
"0#

where Lx\ Ly and Lz are the lengths of the 2!D lattice in
the x!\ y! and z! directions\ respectively and a is the lattice
constant[ The set of allowed wave vectors k\ assuming
periodic boundary conditions\ is given by ð8Ł]

kx � 9^ 2
1p

Lx

^ 2
3p

Lx

[ [ [
Nxp

Lx

\ Dkx �
1p

Lx

�
1p

Nxa

ky � 9^ 2
1p

Ly

^ 2
3p

Ly

[ [ [
Nyp

Ly

\ Dky �
1p

Ly

�
1p

Nya

kz � 9^ 2
1p

Lz

^ 2
3p

Lz

[ [ [
Nzp

Lz

\ Dkz �
1p

Lz

�
1p

Nza
"1#

where kx\ ky and kz are the components of k in the x!\ y!
and z!directions\ respectively and satisfy

k1 � k1
x¦k1

y¦k1
z "2#

and Dkx\ Dky and Dkz are the di}erences in consecutive
discrete k along the corresponding directions[

In the traditional approach\ i[e[\ when the number of
atoms in all directions is large\ then the number of
allowed states per unit volume in a k space of spherical
shape is simply n\ given by

n �
N
V

�
0

"1p#2 g g g dkx dky dkz �
0

"1p#2 0
3pk2

2 1 "3#

where the limits taken by kx\ ky and kz are

−zk1
d−k1

x−k1
y ¾ kz ¾ zk1

d−k1
x−k1

y \

−zk1
d−k1

x ¾ ky ¾ zk1
d−k1

z \

and −kd ¾ kx ¾ kd "4#

and where the Debye vector\ kd\ is calculated from ð8Ł

kd �"5p1n#0:2[ "5#

Now if the number of atoms along any direction is
very small\ then the number of states calculated by equa!
tion "3# is not exactly valid\ as the volume of the cuboid
of sides 1p:Lx\ 1p:Ly and 1p:Lz is large compared to the
surface bounded by the k space\ which will no longer be
spherical in shape[ A quantity o is de_ned as the ratio of
the exact number of points in k space "Nexact# to the
number of points given by equation "3# "Nspherical# ð4\ 5Ł]
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Fig[ 0[ "A# A bulk lattice structure[ "B# A 0!D structure[ "C# A 1!D structure[ "D# A 2!D structure[

o �
Nexact

Nspherical

[ "6#

To simplify the analysis\ this ratio is calculated only for
k � p:a\ the Brillouin zone wave vector[ For Nexact\ from
equation "1# kx and ky for the _rst quadrant are given by]

kxi
� Dkxi � 0

1p

Nxa1 i\ i � 9 [ [ [
Nx

1

and

kyj
� Dkyj � 0

1p

Nya1 j\ j � 9 [ [ [ my "7#

where the value taken by my is speci_ed as shown below[
From equation "2# we have

k1
y¦k1

z �
p1

a1
−k1

xi
"8#

which is the equation of a circle of radius
"p1:a1−k1

xi
#0:1[ Therefore\ my is

my �
maximum value of kyj

1p:Nya

�
X

p1

a1
−k1

xi

1p:Nya
�

Ny

1 X 0−
3i1

N1
x

"09#

which is rounded to the nearest integer[
The number of points lying along the line joining the

points kz � 9 and kz � kzi\ j
becomes

Nzi\ j
�

kzi\ j

1p:Lz

�
Nz

1 X 0−
3i1

N1
x

−
3j1

N1
y

[ "00#

The total number of points in the k space is obtained by
summing up all the points at each kxi

and kyj
in the _rst

quadrant and multiplying by eight]

Nexact � 3Nz s

Nx:1

9

s

my

9 X 0−
3i1

N1
x

−
3j1

N1
y

"01#

From its de_nition in equation "6#\ o is expressed as]

o �

13 s

Nx:1

9

s

my

9 X 0−
3i1

N1
x

−
3j1

N1
y

pNxNy

[ "02#

Strictly speaking this only gives a very conservative esti!
mate of o[ Although o has been treated as a constant\ in
general o is a function of k ð4Ł[

In order to evaluate the heat capacity at constant vol!
ume "C#\ equation "3# is rewritten by incorporating o]

n �
N
V

�
0

"1p#2 g g g o dkx dky dkz

�
o

"1p#2 g g g dkx dky dkz[ "03#

Since the values taken by kx and ky are discrete on the
scale of 1p:Lx and 1p:Ly\ the triple integral in equation
"03# cannot be carried out\ leading to its replacement by
summation[ Evaluation of the above integral by sum!
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mation will lead to the appropriate calculation of kd[
However\ kd given by using summation does not di}er
much from the classical value ðequation "5#Ł because of
the opposing e}ects of o and the replacement of the inte!
gral in equation "03# by summation ð4Ł[ If o is not taken
into consideration then kd will increase compared to the
bulk case ð4\ 5Ł\ thereby increasing the Debye temperature
as suggested by Grille et al[ ð6Ł[ Here\ for simplicity the
value of kd is given by equation "5#[

The calculation of C by incorporating the above analy!
sis is achieved as follows[

Regardless of the model\ C can be expressed as ð09Ł

C � 2
1

1T
s
l

2v

exp 0
2v

kbT1−0
"04#

where 2 is Planck|s constant divided by 1p\ kb the Boltz!
mann constant\ T the temperature and v the phonon
angular frequency[

1[0[ Debye model

In the traditional approach for relatively large samples
equation "04# can be replaced by an integral]

csum � 13
o2n

"1p#2

1

1T
s
kx

s
ky &g

zk1
d−k1

x−k1
y

9

zk1
x¦k1

y¦k1
z

exp 0
2nzk1

x¦k1
y¦k1

z

kbT 1−0

dkz'DkxDky[ "19#

The above summation can be simpli_ed as]

csum � 13
o21n1

"1p#2kbT
1

s

mmaxx

i�0

s

mmaxy

j�0

F"kxi
\ kyj

#DkxDky "10#

and where

F"kxi
\ kyi

# � g
zk1

d−"iDkx#
1−" jky#

1

9

ð"iDkx#1¦" jky#1¦k1
z Ł exp 0

2nz"iDkx#1¦" jDky#1¦k1
z

kbT 1

$exp 0
2nz"iDkx#1¦" jky#1¦k1

z

kbT 1−0%
1

dkz "11#

c � cint �
2

"1p#2

1

1T g g g
2v

exp 0
2v

kbT1−0
dkx dky dkz "05#

where cint is the heat capacity per unit volume calculated
by integration[ Using the Debye approximation\ v � nk\
where n is the speed of long wavelength sound waves\ the
above equation can be reduced to

c int � 8nkb 0
T
u1

2

g
u:T

9

X3 exp"X#

ð"exp"X#−0Ł1
dX "06#

where u is the Debye temperature[

When the number of atoms along any direction is very
small\ then the replacement of the summation in equation
"04# by an integral is not valid along the direction of
fewer atoms[ The Debye model reduces equation "04# to

C � 2
1

1T
s
k

2nk

exp 0
2nk
kbT1−0

[ "07#

The heat capacity per unit volume calculated by sum!
mation "csum# can be written as ð4Ł

csum � 2
o2n

"1p#2

1

1T

×s
kx

s
ky

s
kz

zk1
x¦k1

y¦k1
z

exp 0
2nzk1

x¦k1
y¦k1

z

kbT 1−0

DkxDkyDkz[ "08#

The limits of kx\ ky and kz are given by equation "4#[ For
now\ consider that we are investigating the size e}ects
only along the x! and y!directions "Fig[ 0c# "i[e[\ a 1!D
structure# and thus the summation over z can still be
replaced by an integral\ leading to

where

kx � iDkx\ i � 0 [ [ [ mmaxx

ky � jDky\ j � 0 [ [ [ mmaxy

mmaxx
� 0

kd

1p1Nxa "rounded to the nearest integer#

mmaxy
� 0

zk1
d−"iDkx#1

1p 1Nya

"rounded to the nearest integer#[
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1[1[ BornÐvon Ka�rma�n model for dispersion

The use of the Debye model is questionable for the
structures mentioned in this paper because of the dis!
creteness of k along the direction of fewer atoms\ even at
very low temperatures\ where it is expected to be appli!
cable for the bulk case[ To observe the e}ect of disper!
sion\ the BornÐvon Ka�rma�n model is applied and the
results are compared with the Debye model in Fig[ 1\
which is discussed later[

The dispersion relation is given as ð00Ł

v �
1nkd

p

×X6sin 1 0
kxp

1kd1¦ sin 1 0
kyp

1kd1¦ sin 1 0
kzp

1kd17 "12#

which can be easily reduced to the Debye model for very
small values of k\ i[e[\ when the number of atoms is very
high[ Thus cint is now determined by replacing v with
equation "12# in equation "05#[

Similarly csum can be obtained by substituting v from
equation "12# in equation "04# and carrying out the sum!
mation of kx and ky and the integration over kz\ as was
done for the Debye model[

Fig[ 1[ Heat capacity ratio for 1!D structures calculated using the Debye and the dispersion "{disp|# relations\ vs[ the number of atomic
layers in the x!direction\ where {D| and {Al| refer to diamond and aluminum\ respectively[

2[ Results

The calculation of the heat capacity utilizing the above
analysis is performed for di}erent materials of primary
importance to the semiconductor industry[ The physical
data for the materials of consideration are given in ð4Ł[
Figure 1 presents the results of the Debye and the dis!
persion "BornÐvon Ka�rma�n# models\ in which the ratio
of c calculated by summation and integration is plotted
vs[ Nx\ with Ny and T other variable parameters[ The
ratio csum:cint is practically the same for both models[ This
revelation is not at all surprising\ because the size e}ects
are prominent only in the region where c is proportional
to T2 ð4\ 5Ł[ Although k is quite large for the microscale
case\ the excited k at low temperatures are still small
enough to reduce the BornÐvon Ka�rma�n model to the
Debye model[ The BornÐvon Ka�rma�n model di}ers from
the Debye model in the intermediate temperature range\
where the e}ect of thickness on the thermodynamic
properties ceases to exist[ The decrease in the heat
capacity of these microstructures is due to the large mag!
nitude of k\ resulting in a reduction in the number of
excited phonons[ Figure 1 also shows that increasing Ny\
increasing Nx and increasing T increases csum:cint[ Keeping
this in mind\ analogous to the analysis of ð4\ 5Ł\ a non!
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dimensionalization of the results is achieved by applying
the following argument[

It can be shown ð4\ 5Ł for the 1!D case that\ based on
the Debye model\

csum

cint

� 00¦
2nk
1kbT1

−2

� 0−2
2nk
1kbT

¦= = = [ "13#

The wave vector k in equation "13# can be conveniently

replaced by k �z"Dkx#1¦"Dky#1 because the maximum
contribution to the excited modes will come from the k
given by this value[ Therefore\

csum

cint

� 0−2
2nz"Dkx#1¦"Dky#1

1kbT

� 0−
Au

T X
0

N1
x

¦
0

N1
y

� 0−
Au

TNeff

"14#

where A is a constant and

Neff �
0

z0:N1
x¦0:N1

y

�
NxNy

zN1
x¦N1

y

[ "15#

Similarly for the 2!D case it can be shown that

Neff �
0

z0:N1
x¦0:N1

y¦0:N1
z

�
NxNyNz

z"NxNy#1¦"NyNz#1¦"NzNz#1
[ "16#

Equation "14# suggests that non!dimensionalization of
the results can be easily achieved by plotting csum:cint vs[
the parameter Ne}T:u\ where Ne} is given by equation
"15# for 1!D structures and equation "16# for 2!D struc!
tures[ The results of the 1!D case for a variety of materials
having either a diamond or a FCC lattice structure are
given in Fig[ 2[ It is to be noted that if either Nx\ Ny or
both are large\ then Ne} given by equation "16# reduces
to the Ne} of 1! and 0!D structures\ respectively[ There!
fore\ Ne} given by equation "16# is a general form of Ne}\
which describes 0!\ 1! and 2!D structures simultaneously[

A similar non!dimensionalization is performed for 2!
D structures\ by replacing the integration over kz by a
summation in equation "19#[ The results for the 2!D case
are shown in Fig[ 3[ Along with the 2!D case\ analytical
_ts for the 0!D ð4\ 5Ł and 1!D cases are also plotted for
comparison[ It is seen from Figs 2 and 3 that all the
points for di}erent combinations of Ny\ Nz and u do not
fall exactly on the same curve\ whereas for the 0!D case
all these points fall very elegantly on the same curve ð4\
5Ł[ One of the reasons for this is approximating the upper
limit of the summations in equation "10# to its nearest
integer[ The error caused by this increases as the dimen!
sionality of the system increases because of the increasing
number of summations[

The values of the coe.cients in equation "14# and
expanded to an additional term for 1! and 2!D structures\
found by _tting to the calculated results are presented in

Table 0[ The form of the _t for the 1! and 2!D cases is
determined by carrying out the expansion in equation
"13# to a higher order\ since the magnitude of k is larger
for the 1! and 2!D cases compared to the magnitude of k
for the 0!D case[ The results of Table 0 also indicate that
the signs of the _tted coe.cients match with the signs of
the coe.cients given by equation "13#[ The analytical
solution presented in Table 0 gives the expression till the
second!order for both the 1! and 2!D structures\ as the
higher order terms are negligibly small[ Utilizing the
expressions in Table 0 allows the calculation of the heat
capacity for any microstructure\ provided the bulk value
"cint# is known[ A sample calculation for a 2!D silicon
structure of 099 _ in all directions\ at a temperature 49
K\ gives a 11) reduction in c from its bulk value[

The size e}ect on heat capacity described in this paper
and the earlier work on thin _lms by the same authors
ð4\ 5Ł is compared with the analysis by McGurn et al[ ð7Ł[
McGurn et al[ ð7Ł computed the size e}ects on the heat
capacity of a linear chain of atoms by applying Monte
Carlo simulation for the anharmonic interaction and lat!
tice dynamics for the harmonic interaction[ They used
the LennardÐJones potential function in their calculation[
The LennardÐJones potential\ f"r#\ is given by ð8Ł

f"r# � j $0
s

r1
01

−0
s

r1
5

% "17#

where j and s are the parameters in the LennardÐJones
potential and r is the nearest neighbor separation[ In the
harmonic approximation\ the frequency of oscillation of
the atoms\ v\ is given by ð8Ł

v � 1X
K
m

sin 0
ka
1 1 "18#

where K\ the spring constant for the harmonic approxi!
mation\ is given by

K � $
d1f"r#

dr1 %r�r9

"29#

and where r9 � 10:5s is the equilibrium nearest neighbor
separation[ Equations "17# and "29# yield K as]

K � 46[034js−1[ "20#

Under the Debye assumption v can be simpli_ed as

v � 0X
K
m

a1 k � nk "21#

and therefore\

n �X
K
m

a �X
46[034j

m
a
s

[ "22#

The Debye temperature u for the system is given by ð8Ł

u �
2nkd

kb

�
6[452

kb X
j

m
a
s

kd "23#
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Fig[ 2[ Heat capacity ratio for 1!D structures vs[ the non!dimensional parameter Ne}T:u[

Fig[ 3[ Comparison of the size e}ects for 0!\ 1! and 2!D structures[
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Table 0
Values of Ne} and the analytical curve _ts for 0!\ 1! and 2!D geometries\ where R � Ne}T:u

Case N
e} csum:cint csum:cint

"diamond lattice# "FCC lattice#

0!D Nx 9[8821−9[091:R 9[874−9[0066:R

1!D
NxNy

zN1
x¦N1

y

9[874−9[0181:R¦9[99246:R1 9[8745−9[0464:R¦9[9932:R1

2!D
NxNyNz

z"NxNy#
1¦"NyNz#

1¦"NzNx#
1

9[8876−9[0644:R¦9[99736:R1 9[8744−9[0557:R¦9[9976:R1

where kd � p:a "same as the Brillouin Zone# for a 0!D
system[ u can be further simpli_ed as

u � 12[64
aj

kb

"24#

where a � 2:zmjs is a measure of quantum ~uctuation
as described by McGurn et al[ ð7Ł[ The heat capacity of
a linear chain at very low temperatures is given by ð8Ł

C
Nkb

� 2 0
T
u1�

9[0152
ajb

"25#

where b � 0:kbT[
McGurn et al[ ð7Ł gives C as

C
Nkb

� $
9[0274
ajb

−
9[265
jb % "26#

where the second term on the right!hand!side of equation
"26# represents the anharmonic contribution[ Thus under
the harmonic approximation the second term is elim!
inated\ leaving

C
Nkb

�
9[0274
ajb

[ "27#

Comparing equations "25# and "27#\ it is seen that the
numerators of both equations are almost the same[ In
order to maintain the uniformity of the calculations\ the
value suggested by McGurn et al[ ð7Ł "9[0274# is used for
both equations\ yielding

T
u

�
9[93505

ajb
[ "28#

In order to compare with our results\ we need to
express those of McGurn et al[ ð7Ł in the form of the same
ratio\ csum:cint\ or in other words\ the microscale c divided
by the bulk c[ Although McGurn et al[ ð7Ł report that
N � 04 represents an in_nite linear chain\ N � 04 does
not represent an in_nite chain for bj � 09 and a � 9[0\

because the value of c calculated by lattice dynamics
theory for this con_guration is much less than that given
by equation "27#[ This is not surprising as this con!
_guration represents a system at very low temperature\
or a material of high u[ Therefore\ for this con_guration
c is taken to be the microscale c and is non!dimen!
sionalized by the bulk value of c given by equation "27#[
For their other con_gurations at di}erent values of a\ j

and b\ csum:cint is determined by dividing c for N � 09 for
di}erent values of a\ j and b by the corresponding c for
N � 04[

We assume that the size e}ects on a 0!D chain are
equivalent to the size e}ects on the 2!D structure shown
in Fig[ 0\ because although a 2!D structure has three
directions associated with it\ it has size e}ects in all the
three directions\ i[e[\ 099) of the directions are size
a}ected[ Similarly\ a _nite 0!D chain has only one direc!
tion associated with it and therefore\ 099) of its direc!
tions are size a}ected[ Since the ratio of csum and cint is
being compared\ not the absolute magnitude\ the 2!D
structure and the 0!D chain should give the same results[
Thus\ for comparison\ the equation for a 2!D structure
given in Table 0 will be used\ speci_cally the equation for
the diamond!type lattice[

Figure 4 shows that the trends of the present results
and those of McGurn et al[ ð7Ł agree[ Although there are
some apparent di}erences\ the onset of the microscopic
regime is the same from both calculations[ There is a
greater deviation in the results of McGurn et al[ ð7Ł and
the present analysis at low temperatures[ Some of the
possible reasons for this deviation are] "i# the replacement
of the numerator in equation "25# "9[0152# by the value
suggested by McGurn et al[ ð7Ł "9[0274#[ This predicts a
higher value of the bulk c and hence increases the size
e}ects[ "ii# The comparison has been made between the
0!D calculation of McGurn et al[ ð7Ł and the 2!D cal!
culation of the present analysis[ The lattice structure is
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Fig[ 4[ Comparison between the present 2!D results and those for a 0!D linear chain of atoms presented by McGurn et al[ ð7Ł[

the same for 0!D chains but can taken many di}erent
con_gurations for 2!D structures[ This also contributes
towards the discrepancy between the results of the two
calculations[ "iii# Finally\ u is also a function of the inter!
atomic potential\ and for the 0!D chain it is calculated
for a LennardÐJones potential\ but for the 2!D diamond
lattice\ the interatomic potential is not known\ thus also
contributing to the di}erence in the size e}ects[

2[0[ Other thermodynamic properties

Though the calculation has been carried out for the
heat capacity\ the analysis can be easily extended to other
thermodynamic properties utilizing the following
relations ð01Ł and assuming the solid to be completely
incompressible[

u � Ðc dT "u is internal energy per unit volume#

"39a#

s �
u
T

"s is entropy per unit volume# "39b#

f � u−Ts " f is Helmholtz energy per unit volume#

"39c#

h � u¦pV "h is enthalpy per unit volume\

p is pressure and V is volume# "39d#

` � h−Ts "` is the Gibbs energy per unit volume#[

"39e#

All the above relations are evaluated at constant volume[
These relations show that every thermodynamic property
described above is related to the heat capacity[ So\ it is
quite reasonable to say that every thermodynamic prop!
erty described above will exhibit the same kind of size
e}ects as c does[ This is also con_rmed from the result
for u and c obtained in the earlier work of Prasher and
Phelan ð4Ł[ Therefore\ the size e}ect on any thermo!
dynamic property H can be represented as]

Hmicroscopic

Hbulk

� C"R# "30#

where R � Ne}T:u and C"R# is a function of R[ C"R# is
the same as the analytical form presented in Table 0 for
heat capacity[

3[ Discussion

A characteristic length scale analogous to the charac!
teristic length scale for thermal conduction can also be
associated with thermodynamic properties[ The charac!
teristic length scale for heat conduction is given by ð02Ł
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"i#
L
L

³ O"0# and
L
lc

× O"0# "classical size effects#

"31#

"ii#
L
lc

³ O"0# "quantum effects# "32#

where L is the mean free path of phonons and lc the
dominant phonon wavelength[ For thermodynamic
properties there are no classical size e}ects because these
properties depend only on the number of excited
phonons\ not on the scattering of phonons[ Therefore\
for thermodynamic properties size e}ects are expected
for

L
lc

³ O"0#

where lc is given by ð03Ł

lc �
1p2n

kbT
�

1pu

kdT
�

1pu

"5p1n#0:2T
�

0[500

"P#0:2

ua
T

"33#

where P is the number of atoms per unit cell[ The factor
0[500:P0:2 is very close to 0 and therefore

lc ¼
ua
T

"34#

showing that

L
lc

¼
NT
u

³ O"0# "35#

characterizes the onset of the microscopic region for ther!
modynamic properties[ For 0!D structures NT:u ³ 0 is
suggested by Prasher and Phelan ð4\ 5Ł for prominent size
e}ects on the thermodynamic properties[ For 1! and 2!D
structures NT:u ³ O"0# is more suitable[ A more precise
value can be determined from Fig[ 3\ which shows that
the microscopic regime increases with the dimensionality
of the structure[

There are some key issues\ such as the uncertainty
principle and the use of the periodic boundary condition\
which need to be addressed because of the extremely
small dimensions of the structures considered here[ If it
is assumed that the periodic boundary condition holds at
such minute dimensions\ although it is debatable ð4\ 02Ł\
then the maximum possible uncertainty in the momentum
"Dp# of phonons for a 0!D structure is 2Dkx\ where Dkx

is given by equation "1#[ This is because\ as already dis!
cussed\ the maximum contribution to the thermodynamic
properties in the cryogenic regime comes from kx � Dkx

and thus\ kx � Dkx is the dominant wave vector[ This is
true even for bulk samples[ The maximum uncertainty in
the location of the phonons along the x!direction "Dx# is
Lx[ The uncertainty relation is given by ð04Ł

DxDp − 2 "36#

which upon substitution of the values of Dp and Dx
reduces to

LxDkx − 0[ "37#

Substituting 1p:Lx for Dkx\ the left side of equation "37#
is always equal to 1p\ be it for the bulk case or for the
thin!_lm case\ where the periodic boundary condition is
applied[ Therefore\ within the assumptions of the per!
iodic boundary condition\ the uncertainty in the location
or the momentum of the phonon is the same for a thin!
_lm structure and a bulk solid[ It can be easily shown
that this holds well for 1! and 2!D structures[

The use of the periodic boundary condition is a little
suspect at very small dimensions\ as it is strictly valid
for dimensions tending to in_nity ð05Ł\ but the periodic
boundary condition has still been used at these minute
levels for the calculation of properties\ such as electronic
properties ð05\ 06Ł[ The heat transfer community has
employed the periodic boundary condition primarily for
the calculation of transport properties ð07\ 08Ł[

The _nite dimensions of the solid can give rise to some
other interesting phenomena[ The surface modes can con!
tribute substantially to the energy of the system[ In a bulk
solid the contribution from the surface phonon modes is
negligible[ Although there have been quite a good num!
ber of experimental and theoretical studies on the con!
tribution of the surface modes on the heat capacity of
small particles ð19Ð11Ł\ the size e}ect on the heat capacity
due to bulk phonon modes has been neglected[ Most of
the work on the heat capacity of small particles has been
done for approximately spherical particles having dimen!
sions of the order of 19 _ ð11Ł\ where the contribution of
the surface modes becomes very prominent as the surface!
to!volume ratio is very large[ But the 0! and 1!D struc!
tures are semi!in_nite ð5Ł in one and two directions\
respectively and it is reasonable to expect that the heat!
holding capacity of the structure is primarily due to the
excitation of the bulk phonon modes[ Even for the 2!D
structures the surface modes contribute only at extremely
small dimensions ð11Ł[

It is also reasonable to expect that the BoseÐEinstein
statistical function will not hold for very small samples\
however\ Tien and Chen ð02Ł report that it is still possible
to have enough phonons to satisfy the statistics require!
ments[

4[ Conclusion

This analysis indicates the presence of prominent size
e}ects on the thermodynamic properties of micro!
structures due to a reduction in the _lled phonon states[
The Debye model can be safely assumed for predicting
the size e}ects[ A non!dimensional parameter that com!
bines the e}ects of the dimensionality\ temperature and
the material properties "in the form of the Debye tem!
perature#\ is suggested which accurately describes how
the size e}ects vary with each of these parameters[
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